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NASH, PARETO, AND STACKELBERG SOLUTIONS 
IN NON-ANTAGONISTIC TWO-PERSON GAMES* 

A.F. KLEIMENOV 

Non-antagonistic differential games are formalized below on the basis of 

the formal theory of positional antagonistic differential games /l, 2,'. 

There is a large literature (for part of it, see survey /3/J concerned 

with the types of solution indicated in the title. The Nash solution is 

best known in coalitionless games; Pareto optimality is a basic- concept 

in cooperative games without collateral pay-offs; and finally, the 

Stackelberg solution /4, 5/ is typical for hierarchical games. All three 

types of solution are considered below in a unified approach. Our 

concept of a Pareto solution differs from the usual one in allowing for 

the individual scope of each player. A single structure of strategies 

for all types of solution is discovered for two-person games. Relations 

between the sets of solutions of different types are established. It is 

shown that the set of solutions of each type is characterized by the 

solutions of appropriate non-standard (optimal) control problems. The 

results are illustrated by the example of the plane motion of a material 

particle subject to the total action of control forces generated by the 

different players. The paper is related to /6-E/ and continues the 

studies of /9, lo/. (See also: A.F.Kleimenov. Onthetheoryofhierarchical 
two-person differential games, Preprint Inst. matematika i Mekhanika, 

UNTs AN SSSR, Sverdlovsk, 1985 ). 

Let the dynamics of the controlled system be described by the equation 

x' = f (t, t, IL, u), u E P, v E Q, 5 [tol = 50 (1.1) 

where the function f: G X P X Q- R" is continuous with respect to the set of its arguments, 

satisfies a Lipschitz condition with respect to x, and a condition ensuring that the solutions 

of (1.1) can be continued into a given interval [to,@]. Here, G is a compactum in the space 

of the variables t, Z; P and Q are compacta in the appropriate finite-dimensional spaces. 

The first and second players have at their disposal the choice of controls u and v 

respectively, and aim at minimizing their performance factors, which have the form 

Ii = IJi (x[fil), i = 1, 2 (1.2) 

where tne functions ci : R" ++ R are continuous. Both players have available perfect informa- 

tion on the current position of the game (t, 5 [tl) # and hence can use positional strategies 

/l, 2/ when forming their controls. We assume here for simplicity that it is sufficient for 

both players to confine themselves to the class of pure positional strategies, in the sense 

that an extension of this class (say, to mixed or counter-strategies) for a player does not 

lead to improvement of his factor. The more general case when such an extension is worth 

while can be considered similarly (see e.g., theauthor's paper mentioned at the end of the 

introduction). 
The formalization below of positional strategies and their generated motions in non- 

antagonistic differential games is based on the formal theory for antagonistic differential 

games /l, 2/. 
The first player's pure positional strategy (or simply strategy) is identified with the 

pair U = {u (t,x, e), p1 (e)}, where u (., ., .) is a function of the position (t,x)EG and s>O 

with values in P. The function pl: (0, a)++ (0, a) is continuous and monotonic, and satisfies 

the condition p,(e)+ 0 as e-+0. The introduction of the accuracy parameter E as the argument 

of the strategy is justified in the theory of antagonistic fifferential games /2/. By using 

it, we can ensure that the optimal strategies are universal with respect to the initial 

position. Essential use of this fact is made below. We also show that the introduction of 

the parameter E plays an entirely new role when discovering the structure of solutions in 
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non-antagonistic games. The addition of the function &(e) is due to the specific nature of 
non-antagonistic games. For fixed s the quantity p,(s) is the constraint of the step of 
the discrete scheme which the first player uses when constructing the Euler step-lines. 

The control law Z(U,sl, A,), corresponding to strategy U, is defined by three components: 
the function u(., ., .), appearing in strategyu; the value of the parameter e,; and the division 

A1 {tit’)} of the interval It,, 61, i = 1, . . ., k, + 1, t:" = to, t$ > t?, tgix = 6. Here we must have 
the condition on the division step 

'6 (A,) = maxi (t\y, - 1:"') f p1 (E,) 

The second player's strategy %'= {Vft,r,s), &(a)} is similarly defined, along with the 
corresponding control law z(v,%, A.& where 6(A,),< &(E& 

Let strategies U and V be chosen. Let Z(U,sl, Ai) and Z(V,%, A-J be the control laws 
corresponding to the accuracy parameters e, and a, and the divisions A1 (ti”‘} , A, {tr’z’} of 
It,,61, chosen by the players. The Euler's step-line generated by control laws 2 (u, sl, AJ 
and Z(V,e,, AL\,) from the initial position (to,s,) is the piecewise differentiable function 

xAe ItI = s It, to, so, z (u, sit 4, Z (v, EZ> &)I (1.3) 

which is the stepped solution of the differential equation 

continuous 
it::) of 

function x ItI = t Et, to, Ifi, U, VI. which is the uniform limit 
in. the sequence of Euler step-lines {r 16 tak, ~0"~ z (v, Elk, A;"), 2 (V, ssk, Azk)) as 

k+oc, ejk+O, tok+ to, xok-+ 20, 6 (Ai') Q fir (si'), will be called the motion generated by 
strategies U and V from the initial pOSitiOn (to, 4. At least one motion x [tl 
exists. Whereas the pair of control laws Z (u, 81, 4) and 
a unique Euler step-line, the pair of strategies 

Z (v, s,, 4) defines 
U and V generates in general a set (pencii) 

of motions;which we henceforth denote by X(to,ro, u, v). It is compact in C[to, f+l. 
This formalization can be interpreted as follows. In essence, two interconnected models, 

the descriptive and constructive, of the game are obtained. Either model is built up from 
the equations of dynamics, formalization of the player's actions, and the motions generated by 
these actions. In both models, the dynamics are described by Eq.Cl.1). A player's action in 
the descriptive model is formalized in the formofstrategies U and 8, and the motions generated, 
in the form of the pencil X(t,,x,, U, V). In theoretical arguments it is more convenient to 
work with the descriptive model, whereas the constructive model is best used for calculation 
purposes. To construct the Euler step-lines, it is not, in general, necessary to calculate 
the motions in the descriptive model. 

We can define differently the solution in a non-antagonistic differential game. Here we 
study the three familiar types of solution (see surve /3/l: Nash, Pareto, and Stackelberg. 
However, we shall quote the relevant definitions, first in order to refine the details connected 
with non-uniqueness of the motions in the descriptive model, and second, so that the Pareto 
solution will differ from the classical solution. 

Definition 1. The pair of strategies (UN, VN) forms a Nash equilibrium solution (N- 
solution) in our differential game if, given any strategies U andv, we have the inequalities 

xnin ai(x [6, to, x0, U, PI)> max al@ 16, to, x0. UN, VI) 
min u,(x 10, tO,sO, UN, VI) >'max u, (x 16, to, x0, UN, PI) 

(1.5) 

The operations min and max are taken here with respect to all motions of the relevant 
pencils. Obviously, the value of each player's factor is the same in all the pencil of 
motions generated by the N-solution. The set of &solutions is denoted by N. 

Definition 2. The N-solution (up, VP) forms a modified Pareto solution (p*-solution) 
if, given any (U,V)3 N, we have one of the alternatives: 

a) CTi (5 IS, to, X0, U, VI) = (Ji (X 16, to, 220, Up, VP]), i =I: 1, 2 

ki) 5?j E I, 2: CTj (X [6* t@* Xgv U, VI) > Uj (X I*, tOs xO* Up, VP11 
(1.6) 

Our concept of p*-solution differs from the classical Pareto solution, introduced for 
multicriterion problems, in that the P*-solution is sought in the set of N-solutions. This 
is because, in a differential game, as distinct from a multicriterion problem, the control 
resources are distributed between the players, and hence the individual scope of each player 
must be taken into account. Let P* denote the set of P*-solutions. By definition, P*c N. 
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The set of classical Pareto (P-solutions) is denoted by P. 
Before defining the Stackelberq solution, we makb the following assumptions, governing 

the sequence in which the players choose the strategies. 
lo. The first player, called the leader, explains his strategy lJ* = {u* (t,r, E), pi* (E)} 

to the second player before the start of the game. 
Z". The second player, knowing the first player's strategy lJ*, chooses a sensible 

strategy V* from the condition 

mas cZ @Iti, to,~or U*, VI)-+ minv (1.5) 

where max is taken over the pencil X(&,x,, U", %r). 
When assumptions lo, 2O hold, the differential game is called hierarchicaloraStackelberq 

game with first player as leader. The set of second player's sensible strategies is denoted 

by X:,(u*). 
The first player's task is to find the strategy u, which minimizes the factor 01 (2 Ml) 

(1.2) when the second player chooses a sensible strategy. (For more details, including the 
different cases when the second player chooses a strategy from the set X,(U), see /lo/). Let 
the strategy us' be the solution of this problem. Then, the pair (us", I’S’), where F’S1 E K, (WI), 
is called the Stackelberq (S,-) solution in the hierarchical game with first player as leader. 
Denote by s, the set of S,-solutions. 

The hierarchical differential game with second player as leader can be similarly formalized. 
We denote by s, the set of S,-solutions in this game. The trajectories Z it1, t, < t q< 6. 
generated by the N-, P*-, S,-, and S,-solutions will be called N-, P*-, s,- and S,-trajectories 
respectively. 

Under our assumptions, the sets N, I’“, S,, and s, are not empty. From /lo/ and the 
present author's cited paper, we have: 

Theorem 1. si n P* f; 2, Si c N, i = i, 2. 
Notice that the set P* cannot in general be replaced by Pin the statement of Theorem 1. 
We shall now show how to find each of sets N, P*, S,, S,, by solving the appropriate non- 

-standard control problem. In order to state these problems, we consider the auxiliary 
antagonistic differential games rr and I'%. In both games the dynamics are described by Eq. 
(1.1). In r, the first player minimizes the factor Ul(Z r&l) (1.21, and the second player 
acts against him. In rz the second player minimizes the factor cz(r161) (1.2), and the first 
player acts against him. By the theory of positional antagonistic differential games /l, 2/, 
both our games have continuous value functions y,(t, X) and yz(t,z) and universal saddle 
points 

{z# (t, I, E), u'+(t, .r, E)} (1.8) 
in the game I?i (i = 1,2). 

Problem 1 (non-standard control.problem). Let the dynamics of the controlled system be 
described by Eq.il.1). It is required to find the admissible measurable controls u‘ (% 0 f% 
to< t,<@, such that the trajectory s(t), to< t,<8, generated by them satisfies the inequalities 

Yi (t* x (t)) > Yi (fi, X (6)) = Bi (X (6)), to < t < 67 t = 17 2 (1.9) 

Problem 2 (non-standard optimai control problem). For fixed ~cZ! LO, 11, it is required 
to find the admissible measurable controls u(t), u(t), t0<t<,<6, which minimize the factor GUI 
(z(6))+((1--CC)U,(.~(~)} under conditions (1.9). 

Problem 3 is problem 2 with ct = 1; condition (1.9) with i = 1 is omitted. 

Problem 4 is problem 2 with a = 0; condition (1.9) with i = 2 is omitted. 
Let u* (t), u* (t) (to< t<,<s) be admissible measurable controls, and Z* (t) (to < t ,<@) the 

generated trajectories. Using Luzin's theorem, we can indicate functions n* (t. E), V* (t, E), 
piecewise continuous with respect to the first argument, such that, for the motion x* (t* E) 
generated by them, we have IIz*(t, E)-x*(t)]\< e for all tf Ito, Sl, e>O. we consider the 
strategies u" = (zZ (t, x, e), pi0 (E)) , Vo = {V” (t, X, E), &’ (E)}, where, with t, < t < 6, E > 0, 

24” = U* (t, E), V” = Ye (t, E), 11 5 - x* (t, E) 11 < E (l.lO) 

U0 = U@) (t, X, e), V” = V(l) (t, X, E), 11 5 - x* (t, E) 11 > F, 

and the functions p1" (.), fin" (*) are chosen so that the following inequality is satisfied for 
the Euler step-lines: 

The functions u(a) (s,;, a) and ~(1) (q, ., a) are defined in (1.8). 
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Notice that the pair of strategies (p,v") generates a unique motion identical with 

x* (a). 

Theorem 2. Let the measurable controls u(t), v(t), t, < t< 6, solve Problem 1 (or Problem 
2, 3, 4). Then,. the pair of strategies (U',T) il.lOf, (1.11) is the N-solution (or P*-, S,-, 
&-solution). Conversely, all the n-solutions (or P*-, S,-, S,-solutions) are exhausted up to 
equivalence by the pairs of strategies (u", J? (1.101, (l.ll),, where u* (a), u* (e) is the 
solution of Problem 1 (or of Problem 2, 3, 4). 

As regards the N-, $I-, and S,-solutions, the author proved the theorem in the paper 
cited. The proof for theP *-solution is similar. 

Corollary. The set of trajectories s*(t) (&<tf*) of system (l.l), generated by 
controls u* (t), V* (tf ft, < t < @), solving Problem 1 (or Problem 2, 3, 4), is the same as the 
set of N-trajectories (or of P*-, S,-, S,- trajectories). 

Notes. lo. Strategies &) (., .,.) , "(1) (., ., .) in structure (1.10) can be interpreted as 
universal strategies of penalizing the opponent if he refuses at any instant 1 E It,, 01 to 
follow trajectory z*(,). An approach involving penalization strategiesis,proposed in /5/ for 
static games and is developed in /6/ for dynamic games. 

2O. When constructively tracking trajectory +*(a) information exchange is required in the 
Euler step-lines between the players concerning the accuracy parameter 8% and e, values. 

3O. We can consider similarly the case when the player's factors (1.2) contain integral 
as well as terminal terms (see the author's paper cited above). 

2. Take an example. The equation 

%.= u + u> E, u, IJE Ra, //IL//< 1, J/v/I< 1 (2.Q 

describes the plane motion of a material particle under the joint action of forces u and u, 
available to the first and second players respectively. We are given the initial conditions 

; y;; = e,. %' M = 50 and the instant of termination 6. The i-th player's aim is to move point 
as close as possible to the target point a('), i.e., 

ai (E ISI) = II % [*I - a@)[\ - min, i = 1, 2 (2.2) 

Putting Y, = %1, R = %p, Y, = %1’, y, = 5%’ in Eq.(2.1) and making the change of variables zl= 

Yr + (6 - I) $3, 4 = Y, + (8 - tf ?&> x3 = Ym 34 = y4* we obtain a system whose first two equations are 

9' = (6 - t\ (E&i+ 0:). i=1,2 12.3) 

In variables tI, z%, the factors (2.2) become 

Gi(Z[fi]) = /( t [lY]- a(i)//, x=r 51 
II II XP 

(2.4) 

Since the factors (2.4) are defined by the values of the coordinates zI and = only, 
while the right-hand side of system (2.3) is independent of the other coordinates, we can 
conclude that it suffices to study the differential game only for the truncated system(2.3) 
with factors (2.4). The initial conditions for system (2.3) will then be 

5i [to] = Zoi = %oi - (6 - to) %a$'~ i = 1, 2 

Clearly, the value functions of .antagonistic games I', and Pl are 

yi (t, 2) = u 5 - c&Q /I, i = 1, 2 

and the universal optimal strategies (1.8) are 

I - ,(i) 
di) (t, z, E) = - “(Q (t, t, E) = (- ff p , 

[I 2 - a(‘) [I 
i=l,Z 

We specify the initial conditions to=O, &,,,= 2,2, %oi= -0,8, Eoll = L3, EO)* = -0J and the 

parameter values 6= 2, al(I)= --i, ~g(l) = 5, eJ2)= 5, a$')= 4. We then have zpl = 0,6, teP = 0,9. 
The auxiliary Problem 1, whose solutions appear in structure (1.10) of the N-solutions, 

is formalized as follows: to find measurable vector functions u(t), u(t),O<;<Z,which satisfy 
the conditions 

u z (9) - IP II g 1 f (t) - a”’ (I, 0 < t < 2, I = 1, 2 
where z(.) is the trajectory of the system 

x'it)=(6--t)lu(tf+o(t)l, Is(tfB<L liu@)/1<& s@)=zo (2.5) 

Problems 2-4 are stated in a similar way. Problems l-4 were solved. Without going into 
details, we note e.g., that, in essence, all the solutions of Problem 1 can be obtained in 
the class of continuous controls ~(t),u(t),O<t< 2, generating phase trajectories of system 
(2.5) of just three types: segments of a straight line, arcs of a circle, and "pasteing" of 
a segment with an arc of a circle. By using Theorem 2, the sets N, P*, S, and S, were found. 
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Fig.1 

We shall describe the sets of N-, P*-, St- and S,- trajec- 
tories obtained in terms of the sets fi(6),P*(6),S1(6) and S,(b) 
of right-hand ends of these trajectories (with S=Z). In 
Fig.2 we plot in the (&,&)-plane the initial point A &,z =- 2,2, 
6, = 1,3). The circle with centre at point B (&I = O,G, &,, = 0,9) 
and radius 4, passing through points E,, D,,D,,E, bounds the 
domain where system (2.1) (and (2.3)) is admissible at the 
instant d = 2. The part of the domain bounded by the line 
BCDDCX 3112, where EC, and RC, are arcs of circles with centres 
at points a(') and a(l), having length 4, is the set X(8). The 
set P* (6) is given by the line C,p@&, and points C, and C, 
are the sets S,(V) and S,(~ct) respectively. The broken lines 
show the phase trajectories in the plane (&, &), generated by 
certain solutions of the game. The trajectories passing through 
the points C,and C, are the unique S,- and &-trajectories 
in the game. The N-trajectory passes through point F. 

In this example we have Sic P*, iz1.2. Notice that the 
arc of the circle ElDlD2E,, where E, and E% are the points of 

the domain of admissibility closest to a(" and a(2), is the set I'(@) of ends of the trajectories 
corresponding to the classical P-solutions. The common part of the sets P*(e) and P(e) is 
the arc DID,. 
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